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Abstract-Zones of distributed shear deformation associated with strike-slip and oblique-convergent or 
oblique-divergent systems accommodate complex three-dimensional strains. Current models suggest that 
structural orientations within the zones depend on not only the magnitude of shear strain but also the degree of 
convergence or divergence. The transpressional strain mode1 of Sanderson and Marchini is further developed 
here, and this study also focuses on relating structural orientations in map view to the magnitude of shear and the 
degree of convergence or divergence, and to the magnitudes of horizontal and vertical strains. Results include 
both the mathematical derivation and a set of nomograms relating the model parameters. Applications of the 
model to field examples and laboratory analogs show how the model can be used to determine the degree of 
convergence or divergence, and to calculate strain parameters. The model provides geologists with a method to 
evaluate and predict structural orientations, and to test map and cross-section interpretations. 

INTRODUCTION 

Strike-slip and oblique-convergent or oblique-divergent 
deformation commonly produce zones of distributed 
shear. Within these zones, smaller structures accommo- 
date lateral translation of one zone boundary relative to 
the other. In strike-slip systems lacking a through-going 
fault, distributed shear accounts for all lateral displace- 
ment. In more mature systems, with one or more 
through-going strike-slip faults, adjacent sheared zones 
may still account for a significant portion of the overall 
lateral slip. 

The simple strain ellipse model 

Accepted models for strike-slip structural styles relate 
the coeval development and orientations of contraction- 
al, extensional, and strike-slip structures to horizontal 
simple shear (Sylvester 1988). Harding (1973,1974) first 
described how these diverse structures correspond to a 
horizontal strain ellipse within a zone of simple shear 
(Fig. 1). In brief, the Harding model suggests that simple 
shear produces horizontal contractional and extensional 
incremental strains (principal horizontal strain axes) 
oriented at 45” to the shear. Thus a circular marker is 
deformed into an ellipse, inclined 45” to the direction of 
shear. The model predicts specific orientations for con- 
tractional, extensional and strike-slip structures accord- 
ing to the horizontal incremental strain ellipse. 

The simple Harding-type model fails to address two 
important factors. The first concerns the change in finite 
strain orientations and structural geometries with pro- 
gressive shearing. Most structures appear to rotate in the 
direction sympathetic to the overall shear. Second, few 
natural systems deform in ideal simple shear. Most 
contain a convergent or divergent component, produc- 
ing oblique shear. Recent work (see below) suggests that 

Fig. 1. Schematic map view of part of a distributed shear zone, 
showing the horizontal strain ellipse with long axis ‘inclined’ in the 
direction of shear. Compressional structures (folds, reverse faults) 
develop parallel to the long axis. Extensional structures (tension 
fractures, normal faults) develop parallel to the short axis. Conjugate 

strike-slip faults develop symmetrically about the short axis. 

the orientations of both structures and horizontal strains 
depend on the degree of convergence or divergence. 
Thus the Harding-type model cannot predict structural 
orientations in the general case. Furthermore, the sim- 
ple Harding-type model does not relate the magnitude 
of horizontal finite strains to either the amount of shear 
or the degree of convergence or divergence. 

Other models 

Further development of Harding’s basic concept has 
lead to more sophisticated models. Crowell & Ramirez 
(1979) showed qualitatively how progressive shear re- 
lates to horizontal strain. They suggested that the finite 
strain ellipse rotates and elongates as shear increases, 
and that structural orientations reflect the rotation. 
Naylor et al. (1986) produced a series of strike-slip sand 
box experiments with a variable component of horizon- 
tal ‘pre-load’ across the strike-slip fault zone. They 
showed that initial orientations of conjugate en tchelon 
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strike-slip faults depend on the degree of convergence or 
divergence. Neither of these models offered any quanti- 
tative relationships. 

Several authors have quantitatively related structural 
geometries and strain orientations to the degree of 
convergence or divergence. Withjack & Jamison (1986) 
summarized the results of analog clay models and ana- 
lytical stress-strain models for oblique rifting. Their 
models included the complete spectrum from extension- 
al rifting to oblique-divergent rifting to strike-slip, and 
showed a predictable variation in fault type and orien- 
tation relative to the degree of obliquity. Much of their 
analysis focused on the initial formation of faults, and 
hence the relation to incremental strain, although they 
did briefly describe progressive deformation in some 
models. McCoss (1986) described an elegantly simple 
construction for solving the relative orientations of the 
incremental strain axes and the boundary displacement 
vector for zones of oblique-convergence or oblique- 
divergence. He also showed how the axes of the three- 
dimensional incremental strain ellipsoid vary in magni- 
tude for the complete spectrum of deformation from 
contraction to strike-slip to extension. McCoss (1987) 
effectively demonstrated this spectrum with his annulus 
or ‘ash-can lid’ model. 

Oblique deformation has also been studied in physical 
models. Tron & Brun (1991) reported on analog models 
of oblique rifting, and again included the spectrum of 
extension to oblique-divergence to strike-slip. They 
qualitatively related observed fault orientations to dis- 
placement vector but only briefly addressed progressive 
deformation. Smith & Durney (1992) described the 
development of dip-slip and strike-slip fault sets in clay 
models deformed in oblique-divergence. They very 
effectively related fault type and orientation and in- 
cremental strain state to the displacement vector orien- 
tation, as well as addressed three-dimensional strain 
issues and the degree of vertical thinning or thickening in 
a given model. Unlike the authors cited above, Richard 
et al. (1991) deformed analog models only in strike-slip. 
They did, however, qualitatively describe the rotations 
and overprinting of structures with progressive defor- 
mation and showed how fold axes became more parallel 
to the shear zone with increasing simple shear. 

Mathematical models have addressed both the degree 
of obliquity and the relation of finite strain to progress- 
ive deformation. Sanderson & Marchini (1984) de- 
scribed the basic deformation matrix for three- 
dimensional transpression-transtension. Their model 
has formed the basis for several other investigations, 
including this one (see below for further discussion of 
the Sanderson and Marchini model). Fossen & Tikoff 
(1993) described a more general matrix for oblique 
deformation. Rather than applying pure shear, simple 
shear and volume change in some sequence, they 
showed how to model simultaneous pure and simple 
shear and dilation. Fossen & Tikoff (1993) showed 
quantitatively how finite strain orientations, magnitudes 
and rotations vary with progressive deformation. A 
subset of their more general model matched the Sander- 

son & Marchini (1984) model, but offered a more 
refined discussion of strain paths. 

Jamison’s (1991) model relates the obliquity of folds 
in domains bordering major strike-slip faults and the 
horizontal shortening accommodated by the folds to the 
degree of convergence. The model, however, is limited 
to systems of upright symmetric folds where no faults 
help to accommodate shortening. Although Jamison 
also described the relationship of convergent shear to 
horizontal extension, the model as presented does not 
apply the concept to fully describe two-dimensional and 
three-dimensional strains. Several of the applications 
discussed in this report use examples described by 
Jamison and compare results. 

Purpose and content 

Progress in understanding and predicting structural 
geometries in strike-slip systems depends on the devel- 
opment of quantitative models that relate geometric and 
kinematic parameters. This paper describes how the 
Sanderson & Marchini (1984) model can be further 
developed and focused on relating orientations and 
magnitudes of horizontal finite strains, amount of pro- 
gressive shear, and the degree of convergence or diver- 
gence in zones of oblique shear. These parameters can 
be related mathematically or graphically, using a set of 
nomograms. The model accommodates the complete 
spectrum of deformation, from pure contraction to 
oblique-convergence to pure strike-slip to oblique- 
divergence to pure extension. The model also relates 
geometric and kinematic parameters for progressive 
deformation in shear zones. Although it describes three- 
dimensional strain, the model focuses on horizontal 
strains as revealed by geologic map patterns. This paper 
includesapplication of the model to field examples and 
laboratory analogs, and shows how the model can be 
used to determine degree of convergence or divergence, 
evaluate and predict structural orientations, and test 
map and cross-section interpretations. 

THE TRANSPRESSIONAL STRAIN MODEL 

As described by Sanderson & Marchini (1984) the 
model relates the three-dimensional strain of a domain 
undergoing distributed horizontal shear between two 
parallel vertical boundaries to the magnitude of shear 
and convergence (or divergence) of the boundaries 
(Fig. 2). The model assumes no volume change and no 
change in length parallel to the shear zone, so that 
convergence must be compensated by vertical thicken- 
ing. The assumptions prohibit lateral escape of material. 

Although few natural systems include parallel bound- 
aries and ideally-distributed shear, the model can still be 
applied by defining appropriate domains. 

The deformation matrix 

Sanderson & Marchini (1984) define the deformation 
matrix 



Fig. 2. Transpressional model and parameters. An original unit cube 
is transformed by a combination of distributed horizontal shear (I/J) 
parallel to the x-axis and convergence parallel to the y-axis. The 
deformed width is given by a-‘. After Sanderson & Marchini (1984). 

(1) 

where a-l gives the convergence across the zone, paral- 
lel to the y-axis, a is the vertical thickening, parallel to 
the z-axis, and y is the horizontal shear strain, parallel to 
the x-axis. (See Table 1 for a list of variables). Strictly 
speaking, a-l is the ratio of the deformed width of the 
zone to the original width, and 

y= tan7+0, (2) 

where q is the angular shear. 
The deformation in the horizontal (x-y) plane can be 

described by 

The horizontal strain ellipse 

In the undeformed state (x, y), a unit circle is de- 
scribed by 

x2+y2= 1. (4) 

Table 1. Symbols and parameters used in the model derivation 

D 
a-’ 
a 

Y 

I 

S Hmax 

SHmin 

ST 

S” 

R 

deformation matrix. 
stretch of unit square in y-direction (across shear zone). 
stretch of unit square in z-direction (vertical). 
horizontal shear strain, parallel to x-direction. 
angular shear. 
angle between long axis of horizontal strain ellipse and 
x-axis (shear direction). 
maximum horizontal stretch. 
minimum horizontal stretch. 
transverse horizontal stretch, parallel to y-axis. 
vertical stretch. 
convergence ratio parameter. 

In the deformed state (x’ , y’), the circle has been 
deformed into an ellipse given by 

x ‘2 - 2&y’ + (a2 + y2)yf2 = 1. (5) 

The size and orientation of the ellipse can be described 

by SHmax, SHmin and $J (Fig. 3). SHmax is one-half the 
length of the major axis of the horizontal ellipse. SHmin is 
one-half the length of the minor axis, and @ is the 
orientation of the long axis, measured from the x-axis 
direction. Solving for these parameters in terms of a and 
y (see Appendix 1) yields 
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s Hmax = (1 - y tan #)-1’2, (7) 

SHmin = (1 - y Cot ~)-1’2. (8) 

These equations express the orientation (@) of the 
horizontal strain ellipse and the magnitudes (&max, 
SHmin) of the horizontal principal stretch values. 

The convergence factor: R 

The degree of convergence or divergence can be 
expressed by the factor R, defined as the ratio of the 
component of convergence across the shear zone to the 
strike-slip component (Fig. 3). R is related to para- 
meters of previously published models describing con- 
vergence or divergence as follows: 

R = tan/3 (Sanderson & Marchini 1984), 

R = tan A (McCoss 1986)) 

R = tan a (Jamison 1991). 

Y 

L 
I 

Strike-slip 
displacemer 1 

acrcss zone 

CONVERGENT STRIKE-SLIP (RzO): R= 
Convergence 

Strike-slip 

R=O O<R<l R>l 

m 
SIMPLE CONVERGENT OBLIQUE 
SHEAR STRIKE-SLIP SHORTENING 

DIVERGENT -Convergence 
STRIKE-SLIP (Re 0): 

RS Divergence 
Strike-slip = Strike-slip 

P 

l&-\ 
-1 <R<O 

m 

SIMPLE DIVERGENT 
SHEAR STRIKE-SLIP 

Fig. 3. The horizontal strain parameters, including R, the ratio of 
convergence to strike-slip, and the ranges of R for convergent and . . 

cnvergent shear. 



Positive R values correspond to convergence; negative R model parameters. These nomograms can be used to 
values to divergence. For simple shear, R is zero. As the determine strain values and to test map and cross- 
deformation approaches pure shortening, R approaches section interpretations (see Applications section). 
positive infinity. In between, R quantifies the com- 
ponents of oblique shortening. For R < 1, convergence Minimum horizontal stretch 

dominates over strike-slip; for R > 1, strike-slip is 
dominant. Similarly, negative R values range from The first nomogram relates #, R and SHmin, the 

nearly zero to negative infinity, which corresponds to minimum horizontal stretch (Fig. 4). The nomogram 

pure extension. R values less than or greater than -1 plots SHmin on the horizontal axis and 4 on the vertical 

relate to dominant divergence or strike-slip, respect- axis. Each curve relates # and SHmin for a constant R 

ively. value, with progressive deformation increasing to the 

Assuming that boundary displacement vectors remain right. Thus the points along the vertical axis represent 

constant, at least for some interval of deformation, R the initial orientation of the horizontal finite strain 

can approximate a deformation path. Thus determining ellipse. Note that only the curve for simple shear (R = 0) 

R for a deformed oblique shear zone also determines the starts at 45”. All curves for convergent shear (R > 0) 

interrelationship of the horizontal strain parameters. start at lower angles, and all curves for divergent shear 

(See Appendix 2 for the equations relating R to the other (R < 0) start at higher angles. As Snmin decreases (due to 

strain parameters.) progressive deformation) each curve approaches the 
horizontal axis, suggesting a horizontal finite strain 

Transverse strain ellipse more and more nearly parallel to the shear zone. 
For convergent systems, the curves merge as SHmin 

Occasionally horizontal strain values other than the approaches 0. For divergent deformation, each curve 

maximum or minimum principal strains may be avail- has an end point defined by the maximum values of y, 

able. Commonly seismic lines and geologic cross- and hence minimum values of Snmin, allowed by each R 

sections are oriented perpendicular to the general struc- value (see Appendix 2). 

tural trend, i.e. to the trend of the shear zone. Appendix Figure 4 also shows how the nomogram relates the 

3 gives the stretch of a line perpendicular to the shear three parameters for a specific example. In this example, 

zone (in the deformed state) as the horizontal strain ellipse trends at 20” to the shear 

Sr = (a2 + r”>-1”. (9) 
zone (# = 207, with a SHmin = 0.5. On the nomogram, 
these values intersect on the curve for R = 0.5, indi- 

Note that in general the transverse stretch, Sr, is not the cating a convergent system with half as much conver- 
same as the change in width of the shear zone, a-r. The gence as strike-slip (or twice as much strike-slip as 
transverse stretch includes a component of shortening convergence). 
induced by the shear, y. Only where y = 0 (pure 
shortening or extension) does Sr = a-‘. Maximum horizontal stretch 

Vertical strain The second nomogram (Fig. 5) relates $, R and 
S Hmax, the maximum horizontal stretch. Similar to the 

The vertical strain, expressed as stretch, is given by 

Sv=a=Ry+l. (10) 

Summary 

Using the equations given above (and in the appen- 
dices) it is possible to determine R, the ratio of the 
convergent component to the strike-slip component, 
a-‘, the change in width of the shear zone, and y, the 
shear strain, from $, the orientation of the horizontal 
strain ellipse (long axis) and any one of the horizontal 
stretch magnitudes: maximum, minimum, or transverse. 
Once R, a-‘, and y have been determined, they can be 
used to calculate the other horizontal stretch magni- 
tudes, and the vertical strain, thus specifying the com- 
plete three-dimensional deformation. 

STRAIN P ARAMETER NOMOGRAMS 
MINIMUM HORIZONTAL STRETCH 

1128 R. W. KRANTZ 

Plotting the equations for the horizontal strain para- 
Fig. 4. Nomogram for SHminr C#I and R. Progressive strain increases 

meters yields a set of nomograms that relate the various 
from left to right. The white dot plots the correct location for the 

example shown in the upper right. 
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R-w.PUREEXTENSlON 

MAXIMUM HORIZONTAL STRETCH 

Fig. 5. Nomogram for SHmax, Q, and R. Progressive strain increases 
from left to right. The white dot corresponds to the example shown in 

Fig. 4. 

first graph, this nomogram plots SHmax along the hori- 
zontal axis and C#J along the vertical axis. Each curve 
relates these two parameters for a given R value, with 
progressive deformation increasing to the right. Once 
again, points along the vertical axis reveal the initial 
orientation of the horizontal finite strain ellipse, with R 
= 0 at 45”. With progressive deformation, SHmax in- 
creases and $J decreases for all values of R. The curves do 
not converge on this plot because SHmax ranges from one 
to infinity, and only a limited portion of that range is 
shown in Fig. 5. 

Figure 5 also shows how this nomogram relates the 
three parameters for the same example as in Fig. 4. 
Taking # = 20” and R = 0.5, the nomogram predicts 
s Hmax = 1.3. Thus by measuring one horizontal principal 
stretch (minimum) and the orientation of the horizontal 
strain ellipse, and determining the R value, it is possible 
to predict the other horizontal principal stretch (maxi- 
mum). 

Transverse stretch 

The relationship of transverse stretch to the other 
parameters is more complex (Fig. 6). The transverse 
stretch is not the same as the convergence or divergence 
across the shear zone, but includes a component of 
shortening induced by the shear. For convergent sys- 
tems, the transverse stretch is always a shortening (Sr < 
1.0). For divergent systems, the transverse strain may be 
a shortening (Sr < 1.0) or an extension (Sr > 1 .O), 
depending on the value of R and the magnitude of shear 
strain. 

Figure 6 shows the nomogram for transverse strain. 
As in the other nomograms. 5, plots along the horizon- 
tal axis, with transverse stretch decreasing to the right 
and increasing to the left. The vertical axis again shows 
56 17:*-o 

R=P.SlMPLESHEAR 

2.0 1.9 1.6 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.6 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 
TRANSVERSESTRETCH 

Fig. 6. Nomogram for S,, #J and R. Progressive deformation increases 
to the left or right. For simple shear and for convergent systems, the 
transverse stretch is always a shortening. For divergent systems, the 

curves are more complex. See text for details. 

$, the orientation of the horizontal finite strain ellipse 
(long axis). The curve for simple shear (R = 0) starts at 
# = 45” and decreases to zero as S, decreases. The curves 
for convergent systems (R > 0) start at lower initial 
angles and also converge on zero. The curves for diver- 
gent systems (R < 0) show more complex patterns. For 
strongly divergent systems (R s-2), the curves start at 
high initial @ angles and decrease to the left, with 
increasing transverse stretch. For moderately to slightly 
divergent systems (- 1 5 R % -0.1)) the curves initially 
head to the left (increasing transverse stretch) but then 
head to the right (decreasing transverse stretch). For 
some R values (e.g. R = -0.5) the curve enters the 
transverse shortening field. Thus for slightly divergent 
systems, the transverse stretch, although initially an 
extension, ultimately becomes a shortening. 

Shear strain 

The final nomogram (Fig. 7) relates the horizontal 
shear strain, y, to R and $J. The shear strain is the tangent 
of the angular shear, and plots along the horizontal axis. 
Like the other nomograms, C#J plots along the vertical 
axis. The curves for different R values again initiate at 
the vertical axis and head to the right with progressive 
shear. For pure strike-slip and convergent systems 
(R z 0), the curves merge as y approaches infinity. For 
divergent systems (R < 0), the curves end at maximum y 
values, given by equation (A18). 

Summary 

Figure 8 summarizes the variation in shape and orien- 
tation of the horizontal finite strain ellipse, as well as the 
horizontal stretch parameters, for a range of R values. 
Each row represents progressive deformation with a 
constant R value, i.e. constant boundary displacement 
vector. Shear strain, y, increases to the right. Each 
example shows the deformed shapes of the original 
square and circle; all ellipses are drawn to scale. Each 
example also gives the magnitudes of #J, SHmin, SHmax 
and Sr. 



1130 R. W. KRANTZ 

Angular Shear: ye 
Shear Strain: y = tanv 

0, SIMPLE SHEAR 

-0 1 2 
‘I: SHEAR STRAIN 

Fig. 7. Nomogram for the shear strain parameters. Progressive shear 
increases to the right. 

For simple shear (R = 0), horizontal surface area 
remains constant so the area inside the ellipse also 
remains constant. As y increases, the aspect ratio of the 
ellipse increases and $J decreases so the ellipse becomes 
closer to parallelism with the shear direction. The mag- 
nitudes of both horizontal finite strains also increase, so 
that even moderate amounts of shear strain (y z 0.5) 
involve large horizontal shortening and extensional 
strains. Thus distributed shear in a pure strike-slip 
setting should produce both compressional and exten- 
sional structures. 

For convergent shear (R > O), surface area decreases 
and the ellipse shrinks. Assuming no volume change, the 
model predicts vertical thickening. The ellipse does 
rotate with progressive shear strain, as with pure-slip, 
but initiates at lower $J angles. Note that for strongly 
convergent systems (R 2 2), minimum horizontal 
stretch decreases rapidly but maximum horizontal 
stretch grows very slowly. These systems should be 
dominated by compressional structures that also accom- 
modate vertical thickening. 

Finally, for divergent shear (R < 0), surface area and 
the ellipse both grow. Again given no volume change, 
the model predicts vertical thinning. The ellipse initiates 
at higher angles but still rotates towards the shear 
direction. The maximum horizontal stretch grows much 
more rapidly than the minimum horizontal stretch de- 
creases, suggesting that extensional structures should 
dominate. Note that divergent systems reach a maxi- 
mum shear strain value, determined by R. 

APPLICATIONS 

The transpressional strain model can be used to deter- 
mine convergence ratios, predict horizontal strain para- 

meters and test interpretations. The model can even be 
used to ‘balance’ strains in three dimensions. The appli- 
cations discussed below come from both field and 
experimental model examples of distributed shear sys- 
tems. 

In addition to the assumptions already given for the 
model itself (constant volume, no change in length 
parallel to the shear direction and homogeneous distrib- 
uted shear), these applications make one more funda- 
mental assumption: that the orientations of structures 
observed accurately reflect the orientation of the hori- 
zontal finite strain ellipse. That is, folds and reverse 
faults trend parallel to the long axis, tensional fractures 
and normal faults trend parallel to the short axis, and 
primary en echelon strike-slip faults develop in conju- 
gate pairs, with the acute angle bisected by the short 
axis. Clearly this assumption overlooks the fact that 
structures initiate at an angle corresponding to the 
incremental strain field and are then modified by pro- 
gressive deformation. As discussed in the example of 
experimental folds below, the modification need not be 
a simple passive rotation. Most systems also contain 
structures developed at different stages, including a mix 
of incremental and finite strain features. 

None of the examples completely satisfies the assump- 
tions. Most involve discontinuous deformation, at some 
scale of observation, and none have parallel bounding 
faults. On the regional scale considered, however, shear 
is distributed among smaller structures. Furthermore, 
structural orientations are consistent over at least the 
domain considered. For the examples shown, the shear 
direction is assumed to trend parallel to through-going 
strike-slip faults, if present, or to the regional trend of 
the zone of en echelon structures. Although not ideal, 
the examples allow at least a first-order approximation 
of the convergence ratios and the strain magnitudes 
involved. 

Finally, the accuracy of the model depends on 
measuring parameters that show natural variation in the 
field. Structural orientations commonly vary by at least 
f10”. Strain calculations commonly have errors of 
f20% or more. The issue of progressive deformation 
also introduces a variable error, depending on the de- 
gree of passive rotation. Thus the nomograms and 
equations cannot yield precision better than +20% for a 
and y, or determine R to better than one significant 
figure. The uncertainty in R means that the model may 
be used to resolve systems with various degrees of 
convergence or divergence (see Table 2). 

Determining strain magnitudes 

The first examples demonstrate how the model can 
make use of one or more known strain parameters to 
determine the others. In each case, 9, the orientation of 
the horizontal strain ellipse, is determined from map 
patterns of folds or faults. Horizontal finite strain magni- 
tudes, determined from cross-sections or field measure- 
ments, provide the other constraint. In some examples 
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pOO,pO v=lO",p.18 p30°,y=.58 y=45",y=l 

a R=2 
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Fig. 8. Progressive deformation paths defined by R values. Each row shows the result of increasing &ear for a constant R 
value. See text for discussion. 

the magnitude of strike-slip offset accommodated by the 
shear can also be calculated. 

Figure 9 is a geologic map of part of the Durmid Hills, 
along the San Andreas fault in southern California 
(Babcock 1974). Folds trend obliquely to the San 
Andreas fault. Taking the average fold trend as the long 
axis of the horizontal strain ellipse yields a value for # of 
30”. Burgmann (1989,199l) measured horizontal strains 

in a boudinaged ash bed in the same region. He deter- 
mined a maximum horizontal stretch of 1.63 + 0.05 
parallel to the fold trend. On the nomogram for SHmax 
(Fig. 5) these two parameters define an R value of 0.05, 
nearly pure strike-slip but slightly convergent (see Table 
2). Jamison (1991) determined a convergence angle (his 
a) of 5-10” for this region, equivalent to an R value of 
0.1-0.2. 
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Table 2. Resolving degrees of convergence of divergence and ranges 
ofR 

Nearly pure shortening 
Strongly convergent 
Moderately convergent 
Slightly convergent 
Nearly pure strike-slip 
Slightly divergent 
Moderately divergent 
Strongly divergent 
Nearly pure extension 

R > 10 
2<R<lO 
0.5 < R < 2 
0.1 <R < 0.5 

-0.1 < R < 0.1 
-0.5 < R < -0.1 
-2<R<-0.5 
-lO<R<-2 

R<-10 

Fig. 9. Surface traces of folds along the San Andreas fault in the 
Dunnid Hills, southern California (after Babcock 1974). The average 
fold trend defines the long axis of the horizontal finite strain ellipse, 
and @ = 30”. Burgmann (1989, 1991) measured average horizontal 
extension of 63% parallel to the fold axes. A through D indicate the 

positions of cross-sections discussed in the text. 

This R value, along with #, can now be used to 
determine the other strain parameters (Table 3). The 
nomogram for SHmin (Fig. 4) predicts a horizontal 
stretch of 0.59. This value agrees well with the 40-50% 
shortening determined by Babcock (1974) from cross- 
sections. Thus the cross-sections, if not precisely cor- 
rect, at least contain the correct amount of shortening. 
The transverse stretch nomogram (Fig. 6) predicts a 
transverse stretch of 0.67. Thus transverse cross-sections 
should show less shortening than those drawn perpen- 
dicular to the folds. The model predicts significant 
transverse shortening even though the zone deformed 
by nearly ideal simple shear (i.e. very little conver- 

gence). The shear strain nomogram (Fig. 7) predicts a 
value of 1.1 for y, equivalent to an angular shear of 48”. 
Taking the width of the folded domain as the final width 
of the shear zone, about 4 km, this shear strain value 
suggests that the folding accommodated about 4.4 km of 
lateral displacement. Thus any determination of the 
total offset in the Durmid Hills must add 4.4 km to slip 
determined for the San Andreas fault proper. The 
values of R and y predict a vertical stretch of 1.06, 
suggesting a slight vertical thickening within the shear 
zone. 

Figure 10 shows a series of three strike-slip sand box 
models completed at ARCO. From top to bottom, they 
show the final map pattern of en echelon faults devel- 
oped in simple shear, convergent shear and divergent 
shear. All three experiments used a fine-grained garnet 
sand with an angle of internal friction of 22”. Offset of 
markers on the surface determined the magnitude of 
strike-slip as well as the width of the shear zone at the 
surface. Thus with known R values, the fault orien- 
tations (and @ angle) can be used to predict shear strains 
(Table 3). 

For the simple shear experiment, R = 0, the faults 
strike 27” from the shear direction. Assuming these 
faults are the synthetic half of a conjugate pair, the short 

SIMPLE SHEAR (R=O) 

CONVERGENT (Rz0.2) 

++_____~~~:~~__. 

DIVERGENT (R=-0.2) 

Fig. 10. Fault patterns produced in sandbox models deformed in 
simple shear, convergent strike-slip and divergent strike-slip. The 
dashed line shows the position of the fault in the ‘basement’underlying 

the sand pack. 

Table 3. Strain parameters for examples in text. Known or assumed values given in bold type 

Example and interpretation # @ Angle R tan aj* hmin SHmax sT 

Durmid Hills, California 30 0.05 0.1-0.2 0.59 1.63 0.67 
Experimental faults (simple shear) 41” 0 0.92 1.07 0.99 
Experimental faults (convergent) 33” 0.2 0.85 1.09 0.93 
Experimental faults (divergent) 53” -0.2 0.95 1.10 1.02 
Trinidad 24” 0.6 0.6 0.58 1.08 0.79 
Experimental folds 20” 0 0 0.36 2.73 0.39 
Eagle Canyon Fault, int. 1 22” 0 0.40 2.57 0.43 
Eagle Canyon Fault, int. 2 22” 0.8 0.75 1.07 0.78 
Nacimiento Uplift, int. 1 20” 0.1 0.38 2.16 0.40 
Nacimiento Uplift, int. 2 20” 1 0.81 1.04 0.83 
Lake Basin, normal fault int. 35” 0.3 0.94 1.04 0.97 
Lake basin, strike-slip int. 5” 4.6 0.68 1.004 0.68 
Rinconada Fault 18” 1 1.2 0.68 1.07 0.70 
Andaman Sea, int. 1 32” ? ? ? 1.13 
Andaman Sea, int. 2 32” 0.3 0.78 1.15 0.86 
Andaman Sea, int. 3 32” 0 0.62 1.61 0.71 

*ai is the convergence vector defined by Jamison (1991). Tan oj is equivalent to R. 

Y Comments 

1.1 Agrees with Jamison (1991) 
0.15 
0.25 
0.13 
0.33 Agrees with Jamison (1991) 
2.4 
2.1 Strain values too high 
0.31 Better fit of strain values 
2.2 Strain values too high 
0.2 Better fit of strain values 
0.1 Reasonable strain values 
0.1 Too much shortening 
0.38 Reasonable strain values 

? Parameters undefined 
0.4 Transverse shortening? 
1 Incompatible results 
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Fig. 11. Surface traces of folds along the Eagle Canyon fault, Mecca 
Hills, southern California, after Harding et al. (1985). The oblique 
folds along the southeast portion of the mapped fault define a $ angle 

of 22”. Strain magnitudes are unknown. 

axis of the horizontal finite strain ellipse strikes 27” + 22” 
= 49” from the shear direction. The observed long axis 
strike, $J, is thus 41”. On the shear strain nomogram (Fig. 
7), these values for R and # predict a shear strain of 0.15. 
Comparing the width and offset across the shear zone 
suggests a measured y value of 0.12. For the convergent 
experiment, R = 0.2, the observed fault strike is 35” and 
$=33”.Thev 1 a ue predicted for y is 0.25, compared to a 
measured value of 0.20. For the divergent experiment, R 
= -0.2, the observed fault strike is 15” and $I = 53”. The 
value predicted for y is 0.13, compared to a measured 
value of 0.13. Thus the model does a good job of 
predicting the shear strain magnitudes based on fault 
orientations. 

Jamison (1991) analyzed the structural patterns of 
Trinidad (Kugler 1959). Reverse faults and folds trend 
oblique to the El Pilar fault, defining a value for # of 24”. 
Kugler’s (1959) cross-section trends north-south, per- 
pendicular to the fault and shear direction. The central 
part of the cross-section reveals 21% horizontal shorten- 
ing (ST = 0.79). Using the transverse stretch nomogram 
(Fig. 6), these values define R = 0.6 (moderately conver- 
gent) (Table 3). The convergence angle determined by 
Jamison (1991), 30”, also yields an R value of 0.6. 

The values determined for R and $ from Trinidad 
predict SHmin = 0.76 and SHmax = 1.08. These values 
seem reasonable based on the map patterns; strike-slip 
and normal faults as mapped could easily accommodate 
8% extension parallel to the fold axes and reverse faults. 
The model also predicts y = 0.33, so that the portion of 
the distributed shear zone exposed on the island, about 
60 km wide, accommodated about 20 km of lateral 
displacement. The value of R suggests a moderately 
convergent system, with a ratio of strike-slip to conver- 
gence of about 1.7. 

Odonne & Vialon (1983) deformed layered sequences 
of wax in simple shear. By definition, R = 0. The average 
trend of the fold crests determines a r#~ value of 20”. On 
the nomograms, these values can be used to determine 
the other strain parameters (Table 3). The shear strain 
nomogram (Fig. 7) predicts a y value of 2.4, equivalent 
to an angular shear of 67”. Dividing the width of the 
sheared zone, 20 cm, by the total offset, 51.5 cm, reveals 
an observed value of y of 2.6, equivalent to an angular 
shear of 69”. The other nomograms also predict that 
s Hmax = 1.73, SHmin = 0.36 and S, = 0.39 (shortening). 

Odonne & Vialon (1983) do not provide quantitative 
estimates of horizontal strain, but the schematic cross- 
section they show seems compatible with the horizontal 
shortening estimate. As for the large horizontal exten- 
sion predicted, they point out that the wax used accom- 
modates a large amount of stretching and thinning 
before rupturing. 

Using the same data from Odonne & Vialon (1983), 
Jamison (1991) determined a value for y of only 1.3. The 
difference in shear strain magnitude compared to this 
analysis may result from the interpretation of structural 
geometries inherent in the two models. The transpress- 
ional strain model assumes that structures, such as folds, 
accurately reflect the cumulative strain rate, and that 
geometries correspond to finite strain axis orientations. 
Jamison’s model assumes that folds form at some initial 
angle and then rotate passively and tighten with pro- 
gressive shear. Odonne and Vialon also suggest that fold 
axes originate at 45” to the shear direction (for simple 
shear), and rotate passively as folds tighten. Using the 
transformation equations of the transpressional model, 
a linear element originally at 45” and subjected to a shear 
strain of 2.6 (observed value) will have a final orien- 
tation of 15”. This value differs enough from the ob- 
served $I = 20” to suggest that the folds do not rotate 
passively. The folds must evolve through a refolding and 
rotational process that more accurately reflects the 
accumulated strain. 

Making strain parameter estimates 

In many cases, all horizontal strain parameters remain 
unknown. Only 9, the orientation of the horizontal 
strain ellipse relative to the shear direction, can be 
determined. Even in such cases, the model can be used 
to constrain the strain parameters to reasonable esti- 
mates, based on map patterns and tectonic setting. 

Figure 11 shows a segment of the Eagle Canyon fault, 
a splay of the San Andreas fault in the Mecca Hills, 
southern California (Harding et al. 1985). The oblique 
trend of the folds defines a $ value of 22”, measured 
relative to the through-going fault. Unfortunately, no 
horizontal strain values have been published. The model 
can still be applied by making an estimate for one 
parameter and determining the others. This process is 
continued until reasonable values emerge for all para- 
meters. 

The first attempt assumes that R = 0. This may be a 
reasonable assumption for a short splay off a major 
strike-slip fault. The nomograms, however, suggest 
otherwise (Table 3). Using R = 0 and # = 22”, the model 
predicts that SHmin = 0.40, SHmax = 2.57 and S, = 0.43. 
The value of y, 2.1, implies a large amount of distributed 
shear. These strain magnitudes seem much too high for 
the structural geometries shown on the map, especially 
the large horizontal extension, since the map shows few 
normal faults or other extensional structures. 

The second attempt assumes that SHmax = 1.10. This 
value allows for minor extension parallel to the fold 
axes. The nomograms now suggest that R = 0.8, SHmin = 



1134 R. W. KRANTZ 

0.75, S, = 0.78 and y = 0.3. All the strain parameters are 
now compatible with the map. The R value suggests a 
moderately convergent distributed shear, with nearly 
equal convergence and strike slip. Even if the strain 
magnitude estimates are incorrect by lO-20%, the 
model supports a convergent strike-slip interpretation. 
Note that as mapped by Harding et al. (1985) the Eagle 
Canyon fault displays a significant reverse separation to 
the northwest of the folded domain. 

Chapin & Cather (1983) analyzed the western margin 
of the Nacimiento Uplift (Baltz 1967). They interpreted 
the oblique folds and faults there as the result of very 
slightly convergent strike-slip displacement (and uplift) 
along the margin. The first attempt at applying the 
model thus assumes R = 0.1 (Table 3). The oblique folds 
define $ = 20”. The nomograms suggest that St+min = 
0.38, SHmax = 2.16, S, = 0.40 and y = 2.2. All of these 
strain magnitude estimates seem much too high, espe- 
cially the maximum horizontal extension value, relative 
to the map pattern and the relative lack of normal faults 
or other extensional structures. 

The low 4 angle suggests a moderately convergent 
shear interpretation, Assuming R = 1, the model pre- 
dicts more reasonable strain parameters. The nomo- 
grams show that S”min = 0.81, SHmax = 1.04, S, = 0.83 
and y = 0.2. All of these values better fit with the map, 
especially the small maximum horizontal stretch. Again, 
even with the potential error in horizontal strain esti- 
mates, the likely value for R is significantly greater than 
zero, which supports a more strongly convergent in- 
terpretation for the Nacimiento Uplift margin than pro- 
posed by Chapin & Cather (1983). Better horizontal 
strain estimates would improve the resolution and confi- 
dence of the model application. 

Determining fault types 

Another application of the model, potentially useful 
in subsurface work, involves faults with unknown dis- 
placements. Figure 12 shows the Lake Basin fault zone 
of Montana, as interpreted by Harding et al. (1985) after 
mapping by Alpha & Fanshawe (1954) and Smith 
(1965). The map shows a zone of an echelon faults 
arranged in a linear zone, but with unknown displace- 
ments. Harding et al. (1985) interpreted these faults as 
en echelon normal faults. If true, then the long axis of 
the horizontal finite strain ellipse trends perpendicular 
to the faults and r$ = 35” (Fig. 12). Because no through- 
going fault exists at the surface, the total shear strain 
must be small. For y = 0.1 and @ = 35”, the shear strain 
nomogram suggests that R = 0.3 (Table 3). Using this R 
value, the other nomograms predict SHmin = 0.94, Sr-trnax 
= 1.04 and S, = 0.97. 

Alternatively, the en echelon faults may be inter- 
preted as synthetic (‘R’) strike-slip faults, one of the two 
conjugate strike-slip fault sets. If true, and assuming that 
each conjugate set strikes at 30” from the maximum 
horizontal shortening direction, the horizontal strain 
ellipse would trend nearly parallel to the zone and @ = 5” 
(Fig. 12). Assuming again that y = 0.1, the nomograms 

Fig. 12. Map and alternate interpretations for the Lake Basin fault 
zone, Montana. The map after Harding et al. (1985) shows en 6chelon 
faults with unknown displacement. The normal-slip interpretation 

yields $I = 35”. The strike-slip interpretation yields qb = 5”. 

predict that R = 4.6, SHmin = 0.68, SHmax = 1.004 and 
S, = 0.68 (Table 3). 

Comparing the two alternatives, the normal fault 
interpretation seems more reasonable. All horizontal 
strain magnitudes are small, as might be expected with 
short, minor faults. The smaller R value suggests slightly 
convergent strike-slip, compatible with mostly lateral 
displacement on a basement fault zone. In contrast, the 
strike-slip fault interpretation requires large horizontal 
shortening strains, and suggests a large R value indi- 
cating dominant convergence. Such convergence may be 
difficult to reconcile with structures at deeper levels. 

Three-dimensional strain analysis 

Strain estimates derived from the model, coupled with 
data on the size of the shear domain, can fully constrain 
the three-dimensional deformation. Precision depends 
on the accuracy of the strain parameters used, but even 
where these are only estimates, the model can yield 
important first-order results. 

Diblee (1976) mapped folds in the Monterey Forma- 
tion along part of the Rinconada fault in southern 
California. The oblique fold trend defines @ = 18”. 
Making estimates and testing results, as demonstrated 
above, the model suggests that R = 1 provides reason- 
able results (Table 3: St+min = 0.68, SHmax = 1.07, S, = 
0.70 and y = 0.38). R values much lower than this 
require very large horizontal strains. Solving equation 
(A17) for a and substituting the values for R and y yields 
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a= 1.38anda-’ = 0.72. The results of Jamison’s (1991) 
analysis for the folds along the Rinconada fault deter- 
mined a convergence angle of 50”, equivalent to a value 
for R of 1.2. He also determined a maximum horizontal 
shortening of 7-14% (minimum horizontal stretch of 
0.86-0.93), based on fold limb dips. Although his hori- 
zontal shortening estimate seems low, the degree of 
convergence matches closely that determined here. 

The deformed width of the folded domain is about 12 
km. Since a-l is defined as the deformed width divided 
by the original width, then the original width of the 
folded domain was about 17 km, suggesting 5 km of 
convergence across the shear zone. With R = 1, the 
strike-slip component is also 5 km. Note that this strike- 
slip displacement is distributed on either side of the 
Rinconada fault and does not include offset on the fault 
itself. The vertical strain (thickening) is given by a. 
Whatever the original thickness of material involved in 
the distributed shear, the final thickness is greater by 
38% (not corrected for erosion), which matches the 
positive topographic relief. 

angle. Second, either the map or cross-section may be 
wrong. Assuming the map is based on parallel seismic 
sections, the correlations of faults and thus their appar- 
ent strike orientations may be incorrect. In both map 
and cross-section view, structures accommodating sig- 
nificant horizontal shortening may not be recognized. 
Third, the normal faults and the strike-slip faults may 
not be coeval products of the same deformation. If the 
normal faults predate the strike-slip fault, then their 
relative orientations have no direct relationship. In any 
case, the structures cannot be explained by the simple 
shear model as proposed by Harding (1985). 

DISCUSSION AND CONCLUSIONS 

The transpressional strain model and applications 
described above have implications for both basic 
geometric/kinematic relationships and practical in- 
terpretation. These implications hold for the complete 
spectrum of oblique-convergent to simple shear to 
oblique-divergent systems. 

Evaluating geologic interpretations Implications for relating geometries and strain 

The model has its greatest potential in evaluating 
geologic interpretations. By comparing strain para- 
meters and geometries, the model can identify which 
interpretations are allowed by the data and which are 
not. 

Harding (1985) mapped an extensive system of paral- 
lel normal faults adjacent to a major strike-slip fault in 
the Andaman Sea. The average fault strike yields a # 
value of 32”. Harding (1985) also showed a cross-section 
interpreted along a seismic line nearly normal to the 
strike-slip fault. Restoring bed lengths from the cross- 
section reveals an extensional strain of 13%. Although 
not truly perpendicular to the shear direction (through- 
going fault), the cross-section approximates the trans- 
verse stretch. Table 3 gives the results for the values $ = 
32” and S-r = 1.13. Note that this transverse stretch plots 
on an undefined region of the nomogram (Figure 6). 
These values also do not yield numerical results from the 
model equations. Essentially, transverse stretch > 1 is 
not predicted for r$ values less than 45”. 

(1) The initial orientation of the horizontal finite 
strain ellipse (i.e. after the first increment of strain) 
depends entirely on the ratio of convergence or diver- 
gence to strike-slip. Strongly convergent shear produces 
an ellipse nearly parallel to the shear direction. Simple 
shear produces a strain ellipse at 45” (but only for the 
initial increment). Divergent shear produces initial 
strain ellipse orientations at high angles to the shear 
direction. 

(2) The orientation of the horizontal finite strain 
ellipse in the final state depends on both the ratio of 
convergence to strike-slip and on the magnitude of 
shear. With increasing shear, strain ellipses for all types 
of systems become more nearly parallel to the shear 
direction. 

Assuming SHmax = 1.15, the nomograms and 
equations now yield coherent results (Table 3). 
Although values of R = 0.3 and y = 0.4 seem reason- 
able, SHmin = 0.78 and S-r = 0.86 (shortening) do not 
agree with the map or cross-section interpretations. 
Instead, by assuming R = 0, the nomograms yield values 
of 7 = 1, SHmin = 0.62, SHmax = 1.61 and Sr = 0.71 
(shortening). Again, these values do not fit with the map 
or cross-section interpretations as shown. Other 
assumed values for R result in even worse fits. 

(3) Each specific combination of finite strain ellipse 
orientation and convergence ratio implies a specific set 
of horizontal strain values. The differences in maximum 
horizontal stretch, minimum horizontal stretch, trans- 
verse stretch, and shear strain can be used to distinguish 
shear systems that have the same apparent ellipse orien- 
tations but different convergence ratios. 

(4) The transverse stretch, i.e. what is revealed in a 
cross-section perpendicular to the shear zone, is not the 
same as the convergence or divergence of the bound- 
aries. The transverse stretch contains a component of 
shortening induced by the shear, in addition to the 
convergence. Thus even systems without convergence 
(ideal simple shear) will show shortening in transverse 
cross-sections. 

The discrepancy can be resolved in several ways. 
First, the model may not be appropriate for the Anda- 
man Sea system. One or more assumptions may be 
violated. For example, the deformed zone may accom- 
modate distributed extension parallel to the shear direc- 
tion. This extension mieht nroduce a lower aonarent dt 

Practical implications 

(1) Where at least one strain parameter is known, the 
model can solve for the others. Thus by measuring 
maximum horizontal stretch, for example, the model 
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provides minimum horizontal stretch, transverse 
stretch, shear strain and vertical stretch. 

(2) Where only the orientation of the horizontal finite 
strain ellipse is known, the model can estimate the 
reasonable range of the other parameters and constrain 
the possible deformational setting (i.e. strike-slip that is 
strongly or slightly convergent or divergent). 

Acknowledgements-Kris Meisling, Van Mount, Bill Kilsdonk, Bill 
Hill and Russell Davies provided helpful reviews of this and earlier 
versions of the manuscript. David Sanderson, Basil Tikoff and Peter 
Hudleston provided critical reviews and editorial improvements. Cris- 
tina Hart helped prepare the final manuscript. I thank ARC0 Explor- 
ation and Production Technology for permission to publish this paper. 

(3) Specifying horizontal strain values or ranges 
allows testing of cross-section and map interpretations. 
For example, do cross-sections reveal the correct magni- 
tudes of shortening or extension? Do maps show the 
required proportion of compressional and extensional 
structures? 

(4) Where the width of the shear zone is known, the 
value of shear strain provided by the model allows for 
the calculation of the amount of lateral offset accommo- 
dated by distributed shear. This offset must be added to 
displacement on through-going faults to determine the 
total offset for a strike-slip system. 
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APPENDIX 1 

The horizontal strain ellipse 
Sanderson & Marchini (1984) define the three-dimensional defor- 

mation matrix 

(Al) 

where a-’ is the horizontal stretch, parallel to the y-axis, a is the 
vertical stretch, parallel to the z-axis, and y is the horizontal shear 
strain, parallel to the x-axis. 

The deformation in the horizontal (x-y) plane can be described by 

642) 

and the inverse deformation is given by 

Thus a point in the undeformed state (x, y) can be specified in terms of 
the deformed state (x’, y’): 

t] = (; ;y)b:j> 644) 

which yields the simultaneous linear equations 

1”;“,:f]. W) 

Substituting equation (A5) into the equation for a unit circle in the 
undeformed state, 

xz+yz= 1, (A6) 

yields the following equation for the horizontal strain ellipse in the 
deformed state: 

(x’ - yy’)* + a2y12 = 1. 

Rewriting equation (A7) yields 

X’2 - 2 yx’y’ + (a2 + ~‘)y’~ = 1. 

Equation (A8) is in the form 

c,,x’2 + 2crzx’y’ + cz2y I*= 1 , 

where 

(A7) 

(A8) 

(A9) 

cos2 l#l sir? @J 
Cl1 =7+--i_= 1, 

1 12 

1 
C12= u-6 sin#cos@=-y, 

i 1 

2 2 
C22=~+~.=f2+a2, 

1 2 
(AlO) 

where [t is one-half the length of the major axis of the horizontal 
ellipse, l2 is one-half the length of the minor axis, and @ is the 
orientation of the long axis, measured from the x-axis direction (Fig. 
3). Solving these equations for @, I, and I2 yields 

@=tarctan(-&$+, (Al 1) 

I, = (1 - y tan @)-ln = .SHmaxr (A12) 

12 = (1 + y Cot ~)-ln = S”min. (A13) 

These equations, given in the text, express the orientation (r$) of the 
horizontal strain ellipse and the magnitudes (S,,,,, St+min) of the 
horizontal principal stretches in terms of a and y. 

Solving equations (A12) and (A13) for y yields 

y=cot&$-\, (A14) 

and 

(.‘W 

Thus y can be determined from the orientation of the horizontal strain 
ellipse, y, and the magnitude of the maximum or minimum horizontal 
stretch. 

APPENDIX 2 

The convergence factor, R 
Since R is defined as the convergence component divided by the strike- 
slip component, 

(A16) 

Solving for y 

(A17) 

For divergent deformation, the width of the zone, a-‘, increases from 
1 to infinity at the limit. Thus 

1 
Ymax = - -. R (Al@ 

No such limit for y exists for convergent deformation. 
Solving equation (A16) for a and substituting into equation (All) 

yields 

#=larctan 
i 

tR2+;?)Y+2R 7 1 
and solving for R, 

(A19) 

W3-J) 

Now R can be determined from # and y. 
For the sake of completeness, equation (A19) can be solved for y, 

and equation (All) solved for a, 

a= 

i 
AL-y+ lyn. 
tan2 $ 

6421) 

6422) 

APPENDIX 3 

Transverse strain 
From equation (7) of Sanderson & Marchini (1984), the stretch of an 

arbitrary horizontal line, oriented at an angle /IJ from the x-axis (shear 
direction) in the deformed state, is given by 

I = (1 + (a2 + yz - l)sin2 /3 - 2y sin fi cos 8)-r’*. (~23) 

For a line oriented transverse to the shear zone (Fig. 3) B = 90” and 
equation (A23) simplifies to 

1, = (a2 + +)-‘” = S,, (~24) 

which is the equation given in the text. 
Solving equation (A24) for a yields 

( 1 
1R 

a= $--yZ 
T 

(A-W 

Substituting equation (A25) into equation (All) and solving for y 
yields 

y=ftan2@ $- 1 
i 1 T \ -Jnmaxl 

G-6) 


